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J. Phys. A: Math. Gen., 13 (1980) L211-L216. Printed in Great Britain 

LETTER TO THE EDITOR 

Virial expansions for hard-core fluids 

D S Gaunt and G S Joyce 
Physics Department, King's College, University of London, Strand, London WC2R 2LS, 
UK 

Received 13 March 1980 

Abstract. We discuss some of the difficulties involved in drawing conclusions about the 
asymptotic behaviour of the virial coefficients for a hard-core fluid when only the first few 
coefficients are known. Particular consideration is given to the recent work of Baram and 
Luban for hard discs and spheres, and that of Baxter for hard hexagons on the triangular 
lattice. 

In a recent Letter, Baram and Luban (1979) have used a new series analysis method 
(Levin approximants) to study the virial expansion 

for hard discs and hard spheres. Their main conclusion was that the radius of 
convergence, pn of the virial series for both discs and spheres is determined by a 
singularity at the density of closest-packing p = PO. There is no singularity at the smaller 
density p = pc where, according to molecular dynamic calculations (Alder and Wain- 
wright 1960), these systems undergo a fluid-solid phase transition. 

The work of Baram and Luban (1979) is amongst the most recent contributions to 
the debate about the behaviour of the virial series for hard discs and spheres and, more 
particularly, the sign of the higher virial coefficients, that has been conducted over a 
number of years (see Temperley (1957) and Ree and Hoover (1964) for two early 
examples). The present Letter is a further contribution and its purpose is twofold. First, 
we wish to show that the main results of Baram and Luban (1979) can essentially be 
demonstrated by using a simple ratio technique (Gaunt and Guttmann 1974). We feel 
this is possibly more appropriate than Levin approximants for studying a short series of 
positive terms. Second, and more importantly however, we would like to sound a note 
of caution. It seems to us that to attempt to draw conclusions about the asymptotic form 
of the virial coefficients of a hard-core fluid from the first few terms is particularly 
hazardous. As we point out, the first seven virial coefficients for hard discs and haid 
spheres can be extrapolated with results quite different to, and possibly more plausible 
than, those of Baram and Luban (1979). Other possibilities are suggested by studying 
various lattice analogues. For example, the behaviour of the leading virial coefficients 
for hard discs and spheres is quite similar to the corresponding behaviour for several 
lattice models of hard-core fluids, whose virial coefficients are known to change their 
behaviour quite suddenly at higher order. Recently, it has been shown rigorously 
(Baxter 1980) that for hard hexagons on the triangular lattice (Gaunt 1967) the function 
r ( p )  has a singularity at pc corresponding to a fluid-solid phase transition. Using these 
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exact results by Baxter it has been established (Joyce, unpublished work) that the radius 
of convergence p r  of the virial series for this lattice model is less than pc, and is 
determined by a pair of non-physical singularities in the complex p-plane. Thus, for 
hard hexagons on the triangular lattice the asymptotic behaviour of the virial 
coefficients yields no information concerning the transition at p,. 

The first seven virial coefficients for hard discs and spheres are given in table 1 of 
Baram and Luban (1979) and we will not reproduce them again here. In figure 1 we plot 
the ratios rn=B,, / (Bn-~&) against l /n .  The points labelled D,, Do, S,, So  on the 
right-hand axis show where the extrapolated limits would be if the virial coefficients for 
discs (D) and spheres ( S )  were dominated by singularities at either p ,  or pa. If one 
believes that by n = 7 the ratios have essentially attained their asymptotic behaviour, 
then limits close to Do and So do not seem unreasonable. Furthermore, it is conceivable 
that as n +OO the ratios approach Do and So with zero slope, i.e. something like the 
extrapolations shown as broken curves in figure 1. Such behaviour would correspond to 
the virial series diverging like a simple pole (with critical exponent y = 1) as p + p i 1  for 
both hard discs and hard spheres. This was precisely the conclusion drawn by Baram 
and Luban (1979). 

E 
0 
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Figure 1. The ratios r, plotted against l/n for hard discs (D) and hard spheres (S) .  

However, it is clear that the curves in figure 1 are open to alternative interpretations. 
For example, even if they do approach Do and So, a more careful ratio analysis makes it 
appear unlikely that the limiting slope is zero, especially in the case of hard discs. Thus, 
calculating successive estimates, yn, of the exponent y from yn = 1 + n[(rn/roo) - 11, we 
find 1.938, 1.684,1.490 and 1.329 for n = 4 to 7, and these are decreasing too rapidly 
for y = 1 to be the likely limit. As a second possibility, one might try using N-shifts 
(Gaunt and Guttmann 1974) to remove the curvature that is apparent in the curve for 
hard discs by plotting against l / (n  + N )  with N = -1, -2, -3 , .  . . . Such an approach 
yields an intercept around 0.5 corresponding to a divergence at an unphysical density of 
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about l.lOpo with an exponent y = 1.7. For hard spheres, r7 is rather uncertain but if 
the true value were to lie at the lower end of the error bar, then a similar conclusion 
might be drawn here. In this case, the divergence would be at p = l.18p0 with again 
y = 1-7. These results, indicating a divergence at a physically unrealisable density and 
with an exponent y > 1, are reminiscent of ones obtained by various approximate 
treatments such as the scaled-particle theory (Reiss etal  1959), and the Percus-Yevick 
(Thiele 1963) and Carnahan-Starling (1969) equations of state. If, on the other hand, 
the true value of r7 for hard spheres is around the centre or towards the upper end of the 
error bar, then the curve may either have passed or is about to pass through a minimum. 
What would happen then is, of course, highly conjectural but it would, for example, be 
possible for the curve to approach S,, corresponding to the transition density. If the 
curve for hard spheres does have a minimum around n = 7, then the corresponding 
curve for hard discs might exhibit one for slightly larger values of n. This kind of 
occurrence, in which the same sort of qualitative feature is exhibited by a system in both 
two and three dimensions but is ‘seen’ sooner for the three-dimensional system, is quite 
common. For example, the sixth virial coefficient for a fluid of hard parallel orientated 
cubes is known to be negative (Hoover and De Rocco 1962), whereas extrapolation 
(Gaunt, unpublished) suggests that the corresponding coefficients for orientated 
squares (Hoover and De Rocco 1962) do not become negative until n = 9 or 10. 

Now let us examine the virial expansions for some lattice analogues of the above 
continuum models. The simplest possibility is a hard-core lattice gas in which the 
interaction potential between two atoms is infinite if the atoms occupy the same or 
nearest-neighbour sites of the lattice. This model has been studied numerically by 
Gaunt and Fisher (1965) and by Gaunt (1967) using low- and high-density series 
expansions. For the triangular lattice, Gaunt (1967) concluded that the fluid of hard 
hexagons undergoes a continuous (rather than first-order) transition to an ordered state 
at a point where the activity z and density p are given by 

Z, = 11-05 * 0.15, 

where the close-packing density po = 4. Very recently, Baxter (1980) has found the 
exact solution to this problem and this yields 

pc/po = 0.832 * 0.008, (2) 

~ ,=(11+5&) /2=11~090 1 6 . .  . 
pc/po=3(5-&)/10=O.829 1 7 . .  . . (3) 

We have used the exact solution to derive the following virial expansion through order 
$4. 

r ( p )  =p+3$p2+ 1 0 ~ p 3 + 2 8 ~ p 4 + 7 8 ~ p 5 + 2 0 6 ~ p 6 + 5 0 4 ~ p 7 + 1 0 1 9 ~ p  3 8  +923gp 4 9  

- 6 2 5 4 ~ ~  3 10- 55 7 0 9 ~ ~  10 11- 313 295:pl2-1497 8 7 5 3 ~  12 13 

-6543 4 1 9 2 ~  1 14- 26 835 701+$p1’- 104 484 57O&pl6 

-387 395 8 9 7 ~ ~  16 17- 1363 590 949&pl8-45O9 026 4 5 9 ~ ~  18 19 

+37 406 582 9 5 8 & ~ * ~  + 1279 147 832 2 2 6 & ~ ~ ~ +  . . . . 
-13 675 297 630apZ0-35 864 768 5 5 8 2 ~ ~ l - 6 6  222 040 1 6 0 % ~ ~ ~  

(4) 

Gaunt (1967) derived this expansion through p8, to which order the coefficients are all 
positive, and conjectured that some higher-order terms must be negative. We see from 
(4) that Blo is, in fact, the first of 13 negative coefficients. These are followed by a 
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sequence of positive coefficients, then negative coefficients, and so on. This behaviour 
is caused by a pair of singularities in the complex p-plane at 

p = 0.234 86 . . . f i0.056 04 . . . . (5) 

These unphysical singularities are the closest ones to the origin p = 0 and therefore 
determine the radius of convergence of the virial expansion as 

pr/po=0*724 3 6 . .  . . (6) 

The physical singularity at pc lies just (14.5%) outside the circle of convergence. A 
detailed exadt analysis of the singularity structure of the virial series and its analytic 
continuations in the p-plane has been carried out by one of us (Joyce, to be published). 

The ratios r, for hard hexagons are plotted against l / n  in figure 2 (curve T) for 
n d 9. For n d 5 the curve is similar to the one for hard discs, i.e. it is slightly concave-up 
and so may be extrapolated linearly against l / n  by using N-shifts. This gives an 
intercept which corresponds to an apparent singularity at an unphysical density of 
p = 1 . 1 5 ~ ~  with an exponent y between 1.0 and 1.2. The main way in which it differs 
from the curve for hard discs is that by n = 5 the ratios r, are already well below To 
making it seem rather unlikely that the curve approaches, with zero slope, a point 
corresponding to a singularity at the close-packing density. Nevertheless, the similari- 
ties between the curves for hard discs and hard hexagons for n c 5 are worth noting, as is 
the abrupt and unheralded change in behaviour for hard hexagons when n > 5. The 
curvature changes from being concave-up to concave-down, and the ratios fall rapidly 
towards zero, changing sign at n = 10. Similar behaviour (see also figure 2, curve F) is 
found in three dimensions for the face-centred cubic lattice (Gaunt 1967) for which the 
curvature of the plot changes for n > 4 and the first negative virial coefficient is B7. For 

Ol I I I 
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Figure 2. The ratios r, plotted against l / n  for lattice-gases with first-neighbour exclusions 
on the triangular (T) lattice (i.e. hard hexagons) and the face-centred cubic (F) lattice, and 
with exclusions extending over both first- and second-neighbour sites of a square (Q) lattice. 
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the square, simple cubic and body-centred cubic lattices, the virial coefficients change 
sign even sooner (Gaunt and Fisher 1965, Gaunt 1967). In view of the similarities 
between the lattice and continuum problems there can be no certainty that sooner or 
later similar behaviour will not occur for hard discs and/or spheres. In other words, 
with so few terms available, it is dangerous to assume that the virial coefficients for discs 
and/or spheres do not become negative. As mentioned earlier, they are known to do so 
for another continuum model, namely, hard parallel orientated cubes, while for 
orientated squares the possibility is virtually certain on the basis of numerical 
extrapolation. However, it is only fair to point out that the curves which are the 
analogues of those in figure 1 are concave-down right from the very beginning ( n  L 2) 
for orientated squares and cubes. 

The possibility of negative virial coefficients for hard discs and spheres was sugges- 
ted by considering the analogous lattice models. As already discussed, other possi- 
bilities are apparent from a consideration of figure 1. One of those possibilities was that 
the curve for hard spheres either has passed or is about to pass through a minimum. 
Such behaviour is not unknown for a lattice model of a hard-core fluid, namely, a 
hard-square lattice gas in which the infinite repulsive forces extend over both first- and 
second-neighbour sites of a square lattice. This model may exhibit a third-order 
transition (Bellemans and Nigam 1967, Ree and Chesnut 1967) at a density pc/po = 
0.953 f 0.002, where the close-packing density po = i. The virial coefficients have been 
calculated by Van Craen etal(l968) through n = 16 and the ratios r,, are plotted against 
l / n  in figure 2 (curve Q). Once again, the curve for n d 7 is slightly concave-up and 
extrapolation using N-shifts suggests a divergence at an unphysical density of p = 
1 . 3 8 ~ ~  with an exponent y = 1. In fact, subsequent coefficients reveal that the ratios 
pass through a minimum at n = 7. The behaviour of the next few ratios (8 G n s 11) 
suggests the possibility of a limit close to either Q, or Qo, corresponding to the densities 
pc and po, respectively. However, at n = 12 the ratios exhibit a maximum, after which 
they decrease rapidly changing sign at n = 16 corresponding to B I 6  being negative. Such 
behaviour demonstrates very strikingly the dangers inherent in any attempt to 
extrapolate the leading terms of a virial expansion. 

So far we have not examined any of the lattice models which are expected to exhibit, 
in common with hard discs and spheres, a first-order phase transition. Of these, the 
triangular lattice gas with exclusions extending up to second neighbours (Orban and 
Bellemans 1968) behaves like the models of orientated squares and cubes, i.e. the ratio 
plot is concave-down right from the very beginning, first becoming negative at n = 7. If 
the exclusion range extends to third or fourth neighbours (Orban and Bellemans 1968), 
then the ratio plots are initially concave-up but change to concave-down at n = 7 and 
n = 6 ,  respectively, the last known coefficient in each case. This behaviour is 
reminiscent of that seen in figure 2 for hard hexagons (first-neighbour exclusions only) 
and suggests that the virial coefficients for these higher-neighbour exclusion models 
may soon become negative. The square lattice model with exclusions extending up to 
third neighbours also exhibits a first-order transition. Here the ratio plot is concave-up 
for all known n, although the virial coefficients are only available through Bs (Belle- 
mans and Nigam 1967). For any of these lattice models displaying a first-order phase 
transition it would clearly be very dangerous to speculate, on the basis of such short 
series, about the asymptotic behaviour of the virial coefficients. 

The authors are grateful to C Domb for drawing their attention to the work of Baram 
and Luban, and for helpful conversations. 
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